Recently, I discovered a surprisingly reliable memory caching solution, which I’m planning to use in all my further applications to increase performance. In this blog post, I will share some code examples of how you can integrate Ristretto caching library into your application.
Ristretto is a fast, concurrent cache library built with a focus on performance and correctness.
This library was created by the Dgraph team as a contention-free cache for the Dgraph database.
Let’s dive into the practical example. We are going to build a simple application that gets a list of users from the database. In the first iteration, there will be no caching layer at all. In the second iteration, we will add a Ristretto caching and compare execution time.
Below, you can see that I defined a repository
package with the Repository
interface and with InMemoryRepository
implementation:
package repository
import "fmt"
// Repository interface to handle users data.
type Repository interface {
GetUsers() map[int]string
}
type InMemoryRepository struct{}
// NewInMemoryRepository constructs and returns InMemoryRepository.
func NewInMemoryRepository() *InMemoryRepository {
return &InMemoryRepository{}
}
// GetUsers returns 50000 dummy users from the in-memory repository.
func (r *InMemoryRepository) GetUsers() map[int]string {
users := make(map[int]string)
for i:=1; i <= 50000; i++ {
users[i] = fmt.Sprintf("User %d", i)
}
return users
}
Next, we are going to call a GetUsers()
method 100 times to simulate calling of the same function from several places in the real-world applications:
package main
import (
"fmt"
"github.com/alexsergivan/blog-examples/ristretto/repository"
)
func main() {
for i:=0; i<100; i ++ {
UsersGetter(repository.NewInMemoryRepository())
}
}
func UsersGetter(repository repository.Repository) {
repository.GetUsers()
}
Let’s measure how much time it takes to execute it with time go run main.go
:
1.46s user
0.34s system
106% cpu
1.686 total
Next, we are going to add a caching layer to our application.
Don’t forget to get the Ristretto library:
go get github.com/dgraph-io/ristretto
Inside repository
package we inject Ristretto cache:
package repository
import (
"fmt"
"github.com/dgraph-io/ristretto"
"time"
)
type InMemoryRepository struct{
cache *ristretto.Cache
}
// NewInMemoryRepository constructs and returns InMemoryRepository.
func NewInMemoryRepository(ristrettoCache *ristretto.Cache) *InMemoryRepository {
return &InMemoryRepository{
cache: ristrettoCache,
}
}
// GetUsers returns 50000 dummy users from the in-memory repository.
func (r *InMemoryRepository) GetUsers() map[int]string {
key := "users"
value, found := r.cache.Get(key)
// If the users data not cached yet, get it from the repository.
if !found {
users := make(map[int]string)
for i:=1; i <= 50000; i++ {
users[i] = fmt.Sprintf("User %d", i)
}
// Adds data to the cache for 1h.
r.cache.SetWithTTL(key, users, 1, 1*time.Hour)
time.Sleep(10 * time.Millisecond)
return users
}
return value.(map[int]string)
}
Next, inside the main()
function we initiate a new Ristretto cache and pass it to the InMemoryRepository
:
package main
import (
"github.com/alexsergivan/blog-examples/ristretto/repository"
"github.com/dgraph-io/ristretto"
)
func main() {
ristrettoCache, _ := ristretto.NewCache(&ristretto.Config{
NumCounters: 1e7, // Num keys to track frequency of (10M).
MaxCost: 1 << 30, // Maximum cost of cache (1GB).
BufferItems: 64, // Number of keys per Get buffer.
})
for i:=0; i<100; i ++ {
UsersGetter(repository.NewInMemoryRepository(ristrettoCache))
}
}
func UsersGetter(repository repository.Repository) {
repository.GetUsers()
}
Let’s check how much time it takes to perform the same action:
0.29s user
0.26s system
147% cpu
0.377 total
As you can notice, the total time is 4 times less than in the example without caching layer.
Despite a silly example, I hope you got an idea of how to integrate the Ristretto caching into your application and how it could improve overall performance.
The complete source code you can find here.
Since Go 1.19 we can use a new 103 (Early Hints)
http status code when we create web applications. Let’s figure out how and when this could help us.
We are going to create a simple golang web server that servers some html content. One html page will be served with 103
header and another one without.
After loading comparison we will see how early hints can improve page performance.